أقل من ثلاثة أمثال ما لدى هناء بتسعة أقراص مدمجة

أقل من ثلاثة أمثال ما لدى هناء بتسعة أقراص مدمجة

أقل من ثلاثة أمثال ما لدى هناء بتسعة أقراص مدمجة ، فما هي هذه المعادلة المعبرة عن هذه المسألة، من الأمور الهامة جدًا بالنسبة للطلاب تعلم المعادلات الرياضية والمتراجحات وأشكالها وصياغتها، بالإضافة إلى حلها، وهنالك أنواع مختلفة من المعادلات الرياضية فمنها معادلات كثيرة حدود ومنها معادلات أكثر تعقيدًا.

أقل من ثلاثة أمثال ما لدى هناء بتسعة أقراص مدمجة

بما أن ما تملكه هناء من الأقراص المدمجة هو مجهول، يمكن أن يفرض أنه يساوي س، ومن معطيات المسألة إن ما يملكه شخص ما هو متغير أيضًا يمكن أن يفرض أنه يساوي ع، وهذا المتغير أقل من ثلاثة أمثال ما تملكه هناء أي أقل من 3 *س بمقدار 9 ، أي أن ع = 3س -9 لأن التعبير أقل من بـ يمكننا صياغته على شكل عملية طرح، بالتالي إن أقل من ثلاثة أمثال ما لدى هناء بتسعة أقراص مدمجة

  • الإجابة هي 3س -9.

شاهد أيضًا: الفرق بين المعادلة والمتباينة .. حل المعادلة والمتباينة وأنواعها

الفرق بين المعادلة الرياضية والمتباينة

المعادلة الرياضية هي عبارة عن علاقة مساواة تربط ين طرفين، حيث يحوي الطرفين تعابير رياضية مكونة من رموز تسمى الرموز مجاهيل بينما تسمى الأرقام وابت أو عوامل، أما بالنسبة إلى المتباينة، فهي علاقة تربط بين تعبيرين رياضيين غير متساويين وذلك من خلال علاقة أكبر أو أكبر أو يساوي، أو من خلال علاقة أصغر أو أصغر أو يساوي، فهي تقارن ين تعبيرين يميني ويساري، وتعمل المتباينة على الشكل التالي:[1]

  • p < q تعني أن قيمة p أصغر من قيمة q ولا يمكن أن تساويها أبدًا.
  • P <= q تعني أن قيمة p أصغر من قيمة q و يمكن أن تساويها.
  • p >q تعني أن قيمة p أكبر من قيمة q ولا يمكن أن تساويها أبدًا.
  • p >=q تعني أن قيمة p أكبر من قيمة q ويمكن أن تساويها.

شاهد أيضًا: تسبح سمكة قرش بمعدل ٤٠ كلم في الساعة تقريبا. ما المعادلة التي يمكنك استعمالها لمعرفة الزمن الذي تحتاج إليه لقطع مسافة ٩٦ كلم بهذا المعدل؟

ما هي قواعد المتباينات

هنالك قواعد خاصة بالمتباينات تختلف عن قواعد المعادلات ويمكن تلخيص أهم قواعد كتابة المتباينات الرياضية على الشكل التالي:[1]

  • إذا كانت p أصغر من q، وكانت q أصغر من d عندها p أصغر من d حتمًا أي
    p < q & q<d => p < d.
  • إذا كانت p أكبر من q، وكانت q أكبر من d عندها p أكبر من d حتمًا أي
    p > q & q >d => p > d
  • إذا كانت قيمة p  أصغر من قيمة q  عندها قيمة q  أكبر من قيمة p  أي
    p < q => q >p.
  • يمكن طرح عدد من طرفي المتباينة بدون أن تتغير قيمة المتباينة أي
    p<q => p-d < q-d.
  • يمكن إضافة عدد إلى طرفي المتباينة بدون أن تتغير قيمة المتباينة أي
    p<q => p+d < q +d.
  • يمكن ضرب طرفي المتباينة بعدد موجب بدون أن يتغير اتجاه المتباينة أي
    p < q => p*d < q*d : d >0.
  • يمكن ضرب طرفي المتباينة بعدد سالب بشرط أن يتم تغيير اتجاه المتباينة أي
    p < q => p*d > q*d : d <0.
  • إذا كان عدد أكبر من عدد آخر فإن مقلوب العدد الأول أصغر من مقلوب العدد الثاني أي
    p > q => 1/p < 1/q .

شاهد أيضًا: يمكن كتابة العدد ٨×٨×٨ باستعمال الأسس على الصورة التالية

وفي الختام تمت الإجابة على السؤال أقل من ثلاثة أمثال ما لدى هناء بتسعة أقراص مدمجة ، كما تم تعريف المعادلات والمتباينات الرياضية بالإضافة إلى ذكر أهم خصائص واتجاهات المتباينات بالإضافة إلى ذكر القواعد التي تتحكم بطريقة عمل المتباينات الرياضية.

المراجع

  1. ^ cuemath.com , Inequalities , 10/11/2021
37 مشاهدة