شروط تشابه المضلعات

كتابة ربا عبدالله - تاريخ الكتابة: 20 ديسمبر 2020 , 22:12 - آخر تحديث : 20 ديسمبر 2020 , 22:12
شروط تشابه المضلعات

شروط تشابه المضلعات هي شروط محددة تساعد في الحسابات الرياضية المتعددة، وفي الهندسة أيضًا وعلى وجه التحديد، حيث عند معرفة هذه الشروط من الممكن إيجاد أطوال المضلعات المتشابهة وزواياها، باختلاف أشكالها سواء كانت هذه المضلعات مربعات أو مثلثات أو مستطيلات، أو أشكال سداسية، وغيرها الكثير من المضلعات.

شروط تشابه المضلعات

المضلعات المتشابهة هي عبارة عن مضلعين لهما نفس الشكل ولكن ليس لهما نفس الحجم، والمضلعات المتشابهة لها زوايا متطابقة، وأضلاع متناظرة متناسبة، وتشمل المضلعات المتشابهة أنواع معينة من المثلثات والأشكال الرباعية والسداسية والمضلعات الأخرى المتشابهة، ويمكن حساب قياسات الأضلاع للمضلعات أو زواياها غير المعلومة بناءً على نسبة أحد جوانب المضلع إلى الجانب المعلوم الآخر، ومساواتها مع أضلاع المضلع الآخر، ونسبة تشابههما هي النسبة بين طولي ضلعين متقابلين لزاويتين متطابقتين؛ فبذلك تكون شروط تشابه المضلعات في أن تكون المضلعات المتشابهة لها نفس الشكل، وزواياها متطابقة، وأضلاعها متناسبة. [1]

أمثلة حول تشابه المضلعات

للتأكد من تشابه المضلعات نجد النسب بين الأضلاع والزوايا المتطابقة في المضلعين، فإذا كانت الإجابة متساوية لكلا المضلعين، فبالتالي تكون هذه المضلعات متشابهة.

مثال : إذا كان لديك مضلعين وهما عبارة عن مثلثين إثنين لدى كل منهما زاوية مقدارها 37 ، والضلعين المجاورين لهذه الزاوية في المثلث الأول يبلغ مقدار أحدهما 7.5 سم والثاني 1.5 سم ، بينما أضلاع المثلث الثاني يبلغ أحد أطوال الضلع الأول 30 سم ، والضلع الآخر 6 سم، هل هذين المضلعين متشابهين؟

الحل: من شروط تشابه المثلثات التطابق في الزاويا، وأن تكون الأضلاع متناسبة أيضًا؛ لذلك تكون العلاقة الضلع الأول في المثلث الأول ٪؜ الضلع الثاني في المثلث الأول = الضلع الأول في المثلث الثاني ٪؜ الضلع الثاني في المثلث الثاني، فإذا كانت الإجابة متساوية، سيكونان المثلثين متشابهي الأضلاع، فلذلك يكون الحل على النحو الآتي  هل 7.5 ٪؜ 1.5  تساوي 30 ٪؜ 6

الإجابة تكون للعلاقتين متساوية وهي 5 فلذلك المضلعين متشابهين. [2]

الفرق بين المضلعات المتشابهة والمضلعات المتطابقة 

الأشكال المتطابقة هي الأشكال المتطابقة تمامًا، حيث أن المضلعات المتطابقة في الأشكال المتطابقة لها نفس الحجم، ونفس الزوايا، وهي متطابقة تمامًا لأن جميع الأجزاء المتقابلة متطابقة أو متساوية، بينما في المضلعات المتشابهة تكون الزوايا المقابلة متطابقة، والأضلاع المتناظرة متناسبة، لذلك فإن المضلعات المتشابهة لها نفس الشكل، بينما تختلف أحجامها، كما وتكون هناك نسب منتظمة معينة في المضلعات المتشابهة؛ فبذلك تختلف المضلعات المتشابهة عن المضلعات المتطابقة في الحجم. [3]

وفي الختام نؤكد على أنه تم توضيح شروط تشابه المضلعات حيث يساعد الفهم القوي لهذه الموضوعات في بناء أساس جيد في الهندسة، فمثلًا يمكننا إيجاد قياسات الأضلاع بناءً على التناسب في المضلعات المتشابهة لكل ما يدور من حولنا.

المراجع

  1. ^ ck12.org , 7.3 Similar Polygons and Scale Factors , 20/12/2020
  2. ^ varsitytutors.com , Example Question #1 : Triangle Similarity , 20/12/2020
  3. ^ cuemath.com , Similar Polygons , 20/12/2020
633 مشاهدة